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OPTIMUM QUANTIZATIONS

Abstract

/308

The transformation required by the quantization process of a continuous
variable results in an error that may be considered as noise. We define
Optimum Quantization as the type that minimizes the mean square (or peak)
error for a constant number of quanta. This optimization is possible when
the probability density function of the continuous variable is known.

Relations involving the quantization intervals as a function of the
probability density function and the number of quanta are developed for
three cases, i.e., when the mean of a quantum represents the values of the
variable in that interval after quantization, when the midpoint assumes
the above representation and when the probability density function is
approximated by a piecewise uniform probability density function with
discontinuities at end points of the intervals. In the last case, the mean
and the midpoint for each interval coincide.

Interesting results are obtained for the special case when the
continuous variable has a uniform probability density function; optimization
of this case results in uniform quantization which incidentally produces

the maximum mean square quantization error. Aé;/



I. TINTRODUCTION

The majority of telemetry systems is concerned with the measurement and
transmission of information about the value of a finite range continuous
variable.

A typical telemetry system such as the one shown in Figure 1 exposes
some of the most important transformations that the variable.is ysually
subjected to, from the point of measurement (or source) to the recording
station (or receiver). , .

At the receiver, the detected value of the variable may be in, error
due to errors, or equivalently noise, introduced by the transformatiqn and
the medium. o N

There are always errors in the received value of the variable whenever
this variable goes through an irreversible transformation.* For example,
referring to the building blocks of Figure 1, sampling is not anyirreversible
transformation if the sampling rate is more than or equal tQ-l/Zwﬂwhegevw
is the highest signal frequency, or in some cases the bandwidth. - However,
quantization and addition of noise are irreversible transformations .
resulting in errors.

Although the statistics of the errors due to individual disturbances
can be easily found, in case of more than one disturbance, these disturbances
must be properly combined. The two most serious dicturbances re[er;ed to

here are the error due to quantization and the chammel noise.

*An irrcversible transformation is defined here as a transformation T which,
if applied to x, will result in xT and whose inverse cannot restore x by
the operation (xT)T‘l, or if T has no inverse.
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To provide the necessary background for this diécussion, the second
part of this paper is devoted to the definitions and the types of
quantization errors and their strong correspondence to the choice of the
point that represents the infinite number of pecints of a quantum. This
part ends with a proof that for uniform quantization the error is independent
of the probability density function of .

Part III is devoted to an introduction of information measure, and
the information loss due to quantization and gaussian noise. This part
is concluded with a comparison of the errors due to channel noise and those
due to quantization with a brief description of their dependence on n,
the number of levels. In addition,the twc disturbances are combined for an
optimum choice of n, the number of quantization levels.

Part 1V utilizes the probability density function of a random variable
x to optimize the quantization process by w.nimizing the quantization error,
eq,under three different conditionms.

Finally, Part V is devoted to discussion and some results cobtained by
using typical probability density functions &s examples.

II. DEFINITIONS OF QUANTIZALION ERRORS

Quantization is a many-to-one transformation of a set of values of a
continuous variable into one vatuwe vi. This transformatior maps an infinite
number of elements, representing the values of a continucus variable in a
certain range r» to one clement that correspunds to the range r,.

ftefore proceeding any further, we must ideutify this element that
corresponds to r; in such a manner so as to enable ourselves to define a

measurc on the quantization error.
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Since rj, being an abstract set of points, cannot be represented by
one value, two alternate values that could be used in lieu of rj are the
mean of X in the interval r; and the midpoint of this interval.

The mean value of x in the interval (x;_1, Xj) is expressed by:

Xy
f xp (x)dx
X

i-1

AP ¢H)
f p(x)dx .

Xi-1

In this case, the average error is:

ey = j(x—mi) p(x)dx =0
Ti : (2)

The midpoint of the interval (x;_j, Xj) is defined as:

i (3)

In this case, the mean error is not generally equal to zero. However, the

peak error becomes *q;/2 where q; is the ith quantization interval;
q; = X§ - ¥Xj-1

The significance of these two types of characterizations of r; will
become evident by referring to Figure 2a where the random variable, x, has

been uniformly quantized into six intervals Xy Xy, -==-= » Xg- If the range
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of x, ry, is identified with the bottom of each intefval X 1> the error
is plotted in Figure 2b and varies from zero to q; -

Let us now draw a set of lines of value v; on the error curve (Figure 2b)
and call them the zero error lines for each interval. This procedure is
equivalent to identifying the ranges ry by %51 + vyis the error in this
case will vary from -v; toqy - vy.

The peak error is either

-V .
1

or qj - vy whichever is larger. By

letting

‘-Vi| = ql - Vi or Vi = qi/2

we minimize the peak error. Thus by setting v; equal to the midpoint we

minimize the peak error.

Similarly, the mean square error is

<e2> = (x--v]-_)2 = x2 - 2;cvi + vi2

To find the value of vy for minimum square error, we differentiate the above

expression with respect to v; and set it equal to zero.

d
W <e2> = -2?+2V1=0 or vi=!!=mi

So the mean square error is minimum when the r.v.x is identified with the

mean of the ith quantum.
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In summarizing, we have described here two methods of identifying the

quantized variable x in the ith quantum.

(a) Letting x = m,; X{_1¢%4X;, we minimize the mean square error in

i’
that interval.

(b) Letting x = y;; X; _jeX<X;, we minimize the peak error in the ith
interval.

When the probability density function within an interval, pi(x) is
uniform as shown in Figure 3, then pj(x) is constant during that interval
and the mean as given by (1) is equal to the midpoint as given by (3).
This implies that either type of identification of the interval r; will
result in identical optimizationm.

The special case of uniform quantization has been carried out in
Appendix A with the following results:

The probability density function of the error generated by replacing

the variable in the interval (xi, xi+1) by its mean or midpoint is uniform

with 1
p(e) = q for -q/2< x < q/2
= 0 otherwise
resulting in zero mean error, q/2 peak error and el = ei? = q2/12

independently of the overall probability density function of the random

variable x.
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IIT. INFORMATION LOSS DUE TO QUANTIZATION

The information conveyed by a message is the amount of new knowledge
acquired by receiving the message. For example, if we knew the contents of
the message before reception, its reception would not convey any information.

The measure of information in the binary system could be defined as
the minimum number of yes and no answers necessary to identify one out of
n source symbols*, and the units are bits (for binary digits). Thus, the

self-infcrmation of a discrete signal is

H(x) = -Zp(xjnog p(x ) (4)
n

and it becomes maximum when all p(xj) are equal***, in this case:

H(x) = -log pcxj)zn P(x,) = -log p(x,) )

For the continuous case, the situation is somewhat similar with p(x) being
a uniform distribution and p(xj) substituted by P(x = X). Obviously, the
latter expression is a constant for all x and approaches zero. Application

of (5) for this case yields:

H(x) = log _??;_é_ij__ (6)

*An equivalent definition is the number of bits necessary to specify any
number less than or equal to n in binary form.

**Log x = logy x unless otherwise specified.

*%*Fano. (1)
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This expression goes to infinity as P(x = X) goes to‘zero. The result is
very logical and it means that we need an infinite number of digits to
represent the value of an analog variable. The usual practice is to give
the value of the variable to a certain decimal point, a process equivalent
to assigning the values of the variable in n ranges and specifying the range
in which the value lies. This process is called quan£ization.

The self information of a quantized signal is:

-2 : N
H(x) S P(xj-].(x(xj) log P(xj_1<x<Xj)

The minimum self-information occurs when P(xj_lgx‘xj) is constant for all j,

and in this case:

Xi+l
1
P(x;{ x{xj41) = p(x)dx = =
xg
and H(x) = 1logn

n is the number of quanta and is finite, resulting in a finite H(x).

We have seen in the last paragraph how the information of a continuous
variable is reduced by the quantization process from an infinite to a finite
value. The information loss seems to be infinite irrespective of the value
of n, a finite number; however, if we re-examine our discussion, we shall
discover that in real life the measurement of a variable cannot possibly

contain infinite information due to many limitations, two of the most
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important being the accuracy of the measuring apparafus and the system¥
noise. In general, the system noise is the main factor in determining the
number of distinguishable levels of an analog value. For example, if the
average signal power is S and the average noise (gaussian) power is N, the
number of distinguishable signal levels is V b and if the zero value
is added the number of distinguishable voltage levelslbecomes ’ % + 1 .

Applying equation (6), the information becomes

1 S+1 .
H(X) = 7 log ( —N—> bits

Although this is an unconventional method of deriving the information for a
given S/N the answer is correct.

If the signal has a bandwidth W and a duration T, invoking the sampling
theorem, the signal may be (theoretically) described by samples spaced
1/2W seconds apart; thus, the number of samples in an interval T will be

equal to 2WI. The resulting maximum information per interval T is:
2WT 1/2 log (S/N + 1)#%*
and the maximum information rate (or channel capacity) is:
W log (S/N + 1)

The obvious deduction from the above formula is that there is no

signal that contains infinite information unless the noise is zero or S/N

*The word system may refer to anything from an amplifier to a transmitter-
channel-receiver configuration.
**When S/N = 1 Hp .. = WL the dimension of the signal space.
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is infinite, an impossible event in physical systems; consequently, the
loss of information due to quantization is finite and may be reduced by
increasing the number of quanta (or levels). An increase in the number
of levels will decrease the quantization error at the transmitter, but will
increase the probability of error at the receiver, because the signal
corresponding to one level (range/n)2 decreases as n increases, thus
decreasing the received S/N.

Referring to Figure 1, the quantization mean square error is an error

that occurs in the transitiofi X to X; and is given by:

The error at the receiver due to channel noise is an error due to the
transition from x; to yj (i#j), and it is expressed in a statistical manner,
because in quantized signal transmission an error will be effective only

if it causes the signal to change level, Consequently, for N gaussian, no
matter how small N is in comparison to R/n, the fact that N can assume
values of -00 to @O imposes a probability that the signal will change level.

For quantized signals with n levels of unequal length (nonuniform) the

error produced by going from level i to level j is €5 associated with a

*Uniform quantization is assumed.
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robability P; . that depends on the distance between levels i and j and

the type of modulation. The mean square error is then:

. g ) e, (1)

3
Solving for eN2 for the typical case of PCM (uniform quantization into 2k

levels and binary signals), P.

ij becomes a constant (P) and e, varies

]

uniformly over all discrete distances which are q multiplied by powers of

two; these distances are:

2 ok-1

9, 2q, 2°q, ---, q; (9 = RAg)

and (11) becomes

— k-1 2

2 i2 o _ Ry- 2%k
ey = 2 (a2h" re@ Lo
i=0

In general, the two most significant errors, eEq and ezN are independent;

thus the total error is given by (12) as

el =2 4+ oL (12)
q N
where
n x{
o - ) (x - my)? py(x)dx (13)
i=1 Xi-1

and e y is given by (11).
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Although e2q is independent of p(x) for the casé of uniform quantization,
generally, for optimum quantization¥, ;E; is a function of p(x); from (11)
it is obvious that ;7& is a function of €ij and Pij which are in turn
functions of R, n, S/N, the type of noise, the type of modulation, and the
type of detection.** Optimum quantization will involve optimization of n
and q; under the criterion of minimum mean square error as given by (12).
Minimization of (12) will invariably result in an equation that could only
be solved by numerical methods. To simplify the problem, let us examine eN

and eq separately.
First it should be observed that ey and eq have no minimum as a function

of n all other conditions being constant. However, they are both monotonic

functions of n, one increasing and the other decreasing. The opposing

effects of n on e and eq suggest optimum operation when the two errors

become equal as expressed by equation 14.

e = ey (14)

ol

Once n is thus chosen, e q is minimized by using optimum quantization
with respect to the intervals q; as shown in section IV; with the new value

—

of 2 a new n is chosen and the process is repeated. With a small amount
of experience one might obtain a good estimate of ezq, which may be 20-30%

less than that due to uniform quantization, calculate n and then optimize for

94 in only one trial.

*This will be proven in IV.

**For example:
Pij for FSK = P = %e - L from Lawton (2).

Pij for PCM antipodal signals is an error function.
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IV, OPTIMUM QUANTIZATION

It has been shown in part II that under uniform quantization the results
are independent of the overall probability density function of the random
variable x. It will be shown here that the quantization error may be
minimized if p(x) is utilized in determining the values of the quanta q;.

The first type of optimization will be carried out under the condition
that the quantization process maps all x in the interval (xi-l’ xi) onto the
mean m; or x = m; for xi_1<x(xi. The secbnd type of optimization will be
carried out under the condition that the quantization process maps all x in
the interval (xi-l’ xi) onto the midpoint y;, and in the third type of

S—

optimization the approximation p; (x) = pi(x) will make m; = y; thus forcing

the above two conditions to coincide.

1. Optimum Quantization with (xi-l’ xi)——)mi

To obtain the optimum quantization for a given number of quanta, n,
and under the condition of mapping the ith interval (xi-l’ xi) onto m;, we
must minimize the average mean square error as given by (B-1). This is done
in Appendix B and the results are given by (B-2).

_ ™o+ M |

if the range of x extends from a to b (B-2) represents n-1 equations with

X, = a and X, = b.
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2. Optimum Quantization with (xj.1, xi) ¥ y;i

In this case, we are actually defining optimum quantization as the one
that minimizes the average peak error. This is carried out in Appendix C

with the resultant n-1 equations for xi given by (C-3)

Ai - AjHl
Xi4+] - 2Xi + X;_ 1 T ———— (C-3)
* i-1 p(x1)
or
Aitl - Aq

q; - 9441 =
p(x1)

3. Optimum Quantization with p;(x) = P X

If pj(x) is approximated by p;(x), a uniform distribution for each

interval q;, both p;(x) and m; are functions of x; and vary in such a manner

so that the area in a quantum is preserved. Obviously this type of approxi-
xXi + xi-1

mation will make mi = y; = — and we do not know the points of

discontinuities until the error is minimized.
From Appendix D the equations relating the points Xy, X 9 ------ Xp-1 are

from (D-6)

(xi+l - xi)% [2p(yi+l) + p(x1)] (D-6)

(x1 - x1-1)% [2p(y1) + p(x1)]
where
p(xi) = p(x = xi)
Another way to express this equation is:
295 A; = 29547 Az e (x5) (93Hd549) (9349-9;) (D-6)
Since qj4; - q; may be small, the effect of the p(x;) term on the equation
is very small. So as a preliminary estimate on x; for the solution of (D-6)

one may solve
9i Af = 954 Appq (15)
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DISCUSSTION:

It has been shown here that the type of quantization resulting in the
highest error is the most common one; i.e., the uniform type. The use of
the probability density funétion of the variable in choosing the quantizing
levels reduces the quantization error. This error reduction increases as the
"non-uniformity' of the probability density function of x increases.

Extending the above statement the error reduction becomes zero at ome
extreme when the p.d.f. of x is uniform,

The term '"nmon-uniformity' implies the difference in p.d.f. from one
level to the next. Thus, an extremely non-uniform p.d.f. for a given number
of levels may become more uniform as the number of levels»is increased, thus
decreasing the effectiveness of the methods discussed in this paper. On the
other hand, the self information becomes maximum when each symbol or
quantization interval is equiprobable which implies uniform distribution.
Intuitively speaking, it seems that the loss of self information due to non-
uniformity, is compensated by the error reduction due to advantageous
optimum quantization.

Table I presents some results of improvement in quantization error by
the use of optimum quantization.

Inspection of the exact and approximate distribution method results will

show that for all practical purposes the approximation is reasonably valid.
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APPENDIX A

UNIFORM QUANTIZATION
This type of quantization is common because of its relative simplicity
of implementation. If the interval is represented by the mean, the quantization

process will result in an average mean square error as given by (A-1)

X
1
e? = E;\f (x-m;7 p(x)dx (A-1)
L¥%a
where m; is given by (1)

To prove this, we must first find the mean square error in each interval.

Xi X4
2
;;? = (x-mi)zpi(x)dx = ﬁ; (x-mi) p(x)dx (A-2)
Xi-1 i-1
where
py(x) = P—éfl [u(x-x;_1) - ulx-x4)] (A-3)

and u is the unit step function; Aj, the area under p(x) in the ith interval,
is the normalization factor for p;(x). Averaging over all intervals, one
obtains the average mean square error

el = Z e;? P (x€r) =§ei2 Ay * (A-4)
1

Next, substituting (A-2) into (A-4) we obtain (A-1) QED.
A much simpler equation for the mean square error may be obtained if

p(x) is approximated by a constant density function in the ith interval

. . X
given by: S p (x)dx
j(x) = Xi-1 (A-5)
Xi = Xi-1

* P (x€r,) reads: the probability that x lies in the ith range;
P (x€rj) =P (x5.1¢x < ¥x;)
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This approximation is illustrated in Figure A-1l.
The error probability density function turns out to be uniform as shown
in Figure A-2 and the average mean square error is q2/12 independently of the
probabiiity aensity function of x. Referring to Figure A-1 the smooth line of
p(x). The p.d.f. in éach interval pi(x) is approximated by its average in that ‘
interval,
P = ——— [u(e-xq_p) - u(x - x,)] 4-6)

X{ - xi-l

and the new piecewise uniform function is the new approximate p.d.f., w(x).

n n

A.
w(x) = Z p;(x) = Z ; lux - x3.1) - u(x - x;)] (A-7)

i i

This approximation brings the mean and the midpoint of each interval to the

same point
Xi + Xi-1

Mg T Y17 Z

So far we have taken a range of values of x (the infinite number of
points between x; and Xi-l) and have identified them by their mean or midpoint
mj or y; respectively. The error due to this quantization is:

e =x-y; or x=e+ Y , (A-8)

For y; and e independent:

M =My, Mo ¥ (A-9)

* M is the moment generating function of the random variable.
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Since the moment generating function is the Fourier tfansform of the p.d.f.
(A-9) may be rewritten as:
j{p(x)} =}'@<yiﬁ ¥ {p(e)} (A-10)
Equation (A-9) implies that
p(x) = pyy) @ pe) V) (a-11)
If p(x) is approximated by w(x), the piecewise uniform curve, (A-11) may be
rewritten as:
w(x) = p(y;) ®p(e) (A-12)
At this point, it should be noticed that p(yi) is a train of delta functions
centered at x = y; and of area Aj. If the convolution of p(e) and a train of
delta functions p(y;) 1is to give the function w(x) of Figure A-1, it is clear
that p(e) must be a rectangular pulse function as shown in Figure A-2,
Normalization of p(e) results in K = 1/q. The mean is equal to the

midpoint (uniform distribution) which is obviously zero. So the mean error

q/2
ei = Jr ede = 0
q/2

and the mean square error per interval is:

is zero from

Q-

n

eiz = Z e? -é- de = q2/12 (A-13)
i

Averaging this error over all the intervals

‘n
eZ = Z e? P(y;) = e;? Z P(yi) = &2 = a%/12 (A-14)
1 i

(1) ® is the symbol indicating convolution.
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APPENDIX B

‘OPTIMUM QUANTIZATION WITH (xj.1, X;) m;

Although calculus of variations could be used to minimize the error,
the procedure to be followed here will be a simple one of taking the partial
derivative of the error with respect to eaéh variable x; at a time, holding
the remaining variables constant., For n quanta there are n-1 variables
and the above process will yield n-1 equations with n-1 unknowns, when the
partial derivatives are set equal to zero.

If the range of x extends from a to b and the number of quanta is n,

the expression for the average mean square error is:

—_ X1 X9
e2 = f (x—m]_)2 p(x)dx +f (x-mz)zp(x)dx B S
a Xl
Xi b
+5 (x-mi)2 p(xX)dx + - - = - - - + (x-mﬂ)2 p(x)dx (B-1)
Xi-1 Xp-1
Differentiating with respect to xj
X4 X
i+l
0 <e2> d ¥ 2 2
2~ O+ 0 + ses0 ot cmmm (x-m;)“ p(x)dx + (x-m;41) p (x)dx+0+0--+0
0= Ox;
Xi-1 X4
= 2 2
= (x5 - m3)° p(xy) - (x5 - mj)” p(xy)
Setting the above equation equal to zero for all i
2 _ 2 ,
(x4 - mi) = (% - mi4y) if p(xy) ¥0
The above equation yields
x; = ™M +miy (B-2)

2
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APPENDIX C

OPTIMUM QUANTIZATION WITH (x;_1, X;) = ¥j
For the conditions imposed here we must minimize the average peak error.

The peak error ep is

e, = X X1 = /2 (C-1)

and the average peak error is
Xi
— _ 1 Z a3 1
€& = — 7 P(xEqj) = T Z qi p(x)dx (C-2)
i i

Xi
By differentiating (C-2) with respect to x; and by setting equal to zero we
obtain the condition of optimum quantization for peak error which is

given by C-3.

) ke - x _ _Aih - Af
X i+l i-1 Pxy) (C-3)

Equation (C-3) represents n-1 equations.
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APPENDIX D

OPTIMUM QUANTIZATION USING THE APPROXIMATE pdf

The approximation given by p;(x) = 5;(?7 * will change the dotted line
pdf of Figure B-l to the solid line pdf. In addition, the mean m; equals the
midpoint vi which is equal to one;half of the sum of the limit points of the
interval.

The method of optimization will be similar to the one employed in

Appendix B with differentials replaced by differences because of the nature

of p,( ). The error is given by:

2
el = Z <ej27 P(x¢€ rj) = Z (x-mj) pj(x) dx
j 3 3 interval
1 X X,
2 2 2 > 2
= (x-ml) pl(x)dx + (x-m2) pz(x) dx + ~-=- (x—mi) p; (x) dx
(p-1)
*o X1 X351
*i+l *n
2 —— 2 ——
+ (x-mj41) pi+1(x) dx + --=-- + (x-mpy)  p,(x) dx
X Xn-1

If x; is allowed to vary by a small amount 8 x while the rest of the limits

—1
are kept constant, the new ms error e?’is given by (D-1) with the following

changes in the ith and i + lst integrals, The limit X is replaced by

1 1 1 1
pi(x) = p;, Pi+1(x)-')Pii1(x3 > My ‘?mi sand my —7“‘i+1

1 —
The variation of the ms error is given by the difference of 2" and e2

* See (A-5) and (A-6) for definitionm.
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—_— Xi+4x 1 Xi4l - 1
"y 51 9 ———— - 2 —
Q(2) =e? - e? = (x-mil) p;(x) dx + (x-m%_*_l) Piy (®) dx
Xi-1 Xi+Aax
(D-2)
X i+l
- 2 2 —
(x'mi) P]-_(X) dx - (x"mi.{.]_) Pi+1(x) dx
Xi-1 X ’

Using the fact that all pdf's in (D-2) are uniform and m is half of the sum

o . xj.1 +xj TAXx
of the limits, i.e., my = 5 ) mm———— » Wil =

1t x4
2

(D-2) may be rewritten as¥*:
1 1 J— 3, ! 3
17 | pr AR - XD T g () ey - %y q)T F Ry OO (ry g AX)
—_— 3
— P (xy4 - xi)] (D-3)
To simplify (D-3) let us refer to Figure D-2 and consider the integral that

represents the area under p(x) in the intervals adjoining X; + &x

¥it+Ax Xi i+dx
(p(x)dx = | p(x)dx + p(x) dx (D-4)
xi-l xi_l Xi
similarly
*iH Xi+l Xi+Ax
p(x)dx = p(x)dx - p (x)dx (D-5)
Fitd x *i *i
Xi+Ax
Substituting (A-5) into (D-4) and (D-5) and letting p(x)dx = OA
we get: Xi
1
(x;+ 8x - x; 1) Py () = (x5 - x; ;) p.(x) +4A (D-4)
______1
(k341 = %3 - &%) pin () = (xiq- x,) Py g(x) - DA (D-5)

*if m = _a_?, j‘: (x-m)Zdx = (QTE)B
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Substituting (D-4) and (D-5) into (D-3) and expanding
Ae? = -}—2 {(xi - x4.1) PL(X) &(xi - %) Ax + (8 x>2J
—_— 2
+ iy - %) P (®) ["o? (xi41 = ¥3)8x + (AX)]

2 2
+ DA (x5 - x5y) - (i - Xyp) +o?(xi+1 - xi-l)AX]]

when Ax —) o QA = p(x3)4x

o
|}

2 2 ——m
lm A e o {,2 (x5 - x5.1) Pi(®) —gf (xy41 - %) Piyp(x)

P(x;) [(Xi - xi-1)’ - (i - Xi)%]]

setting the derivative equal to zero and replacing Xy - Xj1 by 9y

we obtain the relation for optimum quantization

2 —— — 2
,,2 Qi Ppiix) = 4 qi+]_2Pj_+]_(X) + p(x;) (qi+12 - q;°) (D-6)

Repeating this for all i is equivalent to considering (D-6) as n~l equations.
These n-1 equations together with

n

form the n equations with n unknowns.



GLOSSARY

x A continuous random variable (r.v.)

Xj; The limits of the quantizing intervals.

Xj + %51

yi The midpoint of the ith interval (y; = )
Xi Xi

m, The mean of the ith interval (m; =} x p(x)dx p(x)dx )
Xi-1 Xi-1

ri The ith range of x (xi_1<x<xi)

R The range of x (also the value of the range = x, - %)

n The number of quantization levels,
q; The value of the ith gquantization interval (qi =%y - xi—l)

p(x) The probability density function (pdf) of x
pi(x) The normalized pdf of x in the ith interval (p;(x) = PTgi)_ 3 %51 <x<Xy)
i

p(xi) = p(x=x;)
p(yi) The probability that x is represented by y; an impulse function located

at x = yj with weight A; =P (xi_]_( x(xi) = P(xfri)

Xi :
piixi = the mean pdf in the ith interval pi(x) =(f p(x)d9 /xi - xi-l)
Xi-1

S The average signal power
N The average thermal noise power

W The signal bandwidth
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Quantization of a continuous function and the
error with (b) midpoint representation and
(c) unbiased representation.

Figure 2
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The pdf of the uniform quantization error.

Figure A-2
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Exact (dotted line) and approximate pdf

Figure D-1
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